241 research outputs found

    Parsimonious Kernel Fisher Discrimination

    No full text
    By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases

    Microcalcifications Detection using PFCM and ANN

    Full text link
    This work presents a method to detect Microcalcifications in Regions of Interest from digitized mammograms. The method is based mainly on the combination of Image Processing, Pattern Recognition and Artificial Intelligence. The Top-Hat transform is a technique based on mathematical morphology operations that, in this work is used to perform contrast enhancement of microcalcifications in the region of interest. In order to find more or less homogeneous regions in the image, we apply a novel image sub-segmentation technique based on Possibilistic Fuzzy c-Means clustering algorithm. From the original region of interest we extract two window-based features, Mean and Deviation Standard, which will be used in a classifier based on a Artificial Neural Network in order to identify microcalcifications. Our results show that the proposed method is a good alternative in the stage of microcalcifications detection, because this stage is an important part of the early Breast Cancer detectio

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    Fetal baboon sex-specific outcomes in adipocyte differentiation at 0.9 gestation in response to moderate maternal nutrient reduction

    Get PDF
    Objective:To investigate in vitro adipocyte differentiation in baboon fetuses in response to reduced maternal nutrition.Design:Cross-sectional comparison of adipocyte differentiation in normally grown fetuses and fetuses of pregnant baboons fed 70% of the control global diet from 30 days of pregnancy to term.Subjects:The subjects comprised control (CTR) fetuses (five female and five male) of mothers fed ad libitum and fetuses of mothers fed 70% of the global diet consumed by CTR (maternal nutrient reduction (MNR), five female and five male fetuses). The expression of genes/proteins involved in adipogenesis (PPARγ, FABP4 and adiponectin) and brown adipose tissue development (UCP1, TBX15 and COXIV) were determined in in vitro-differentiated stromal-vascular cultures from subcutaneous abdominal, subcutaneous femoral and omental adipose tissue depots. Adipocyte number per area (mm 2) was determined histologically to assist in the evaluation of adipocyte size.Results:Maternal suboptimal nutrition suppressed growth of male but not female fetuses and led to adipocyte hypertrophy accompanied by increased markers of white- and, particularly, brown-type adipogenesis in male but not female fetuses.Conclusion:Adipose tissue responses to fetal nonhuman primate undernutrition are sexually dimorphic. While female fetuses adapt adequately, the male ones enhance pathways involved in white and brown adipose tissue development but are unable to compensate for a delayed development of adipose tissue associated with intrauterine growth restriction. These differences need to be considered when assessing developmental programming of adiposity in response to suboptimal maternal nutrition. © 2014 Macmillan Publishers Limited

    Automatic covariate selection in logistic models for chest pain diagnosis: A new approach

    Get PDF
    A newly established method for optimizing logistic models via a minorization-majorization procedure is applied to the problem of diagnosing acute coronary syndromes (ACS). The method provides a principled approach to the selection of covariates which would otherwise require the use of a suboptimal method owing to the size of the covariate set. A strategy for building models is proposed and two models optimized for performance and for simplicity are derived via ten-fold cross-validation. These models confirm that a relatively small set of covariates including clinical and electrocardiographic features can be used successfully in this task. The performance of the models is comparable with previously published models using less principled selection methods. The models prove to be portable when tested on data gathered from three other sites. Whilst diagnostic accuracy and calibration diminishes slightly for these new settings, it remains satisfactory overall. The prospect of building predictive models that are as simple as possible for a required level of performance is valuable if data-driven decision aids are to gain wide acceptance in the clinical situation owing to the need to minimize the time taken to gather and enter data at the bedside

    Beyond brain reading: randomized sparsity and clustering to simultaneously predict and identify

    Get PDF
    International audienceThe prediction of behavioral covariates from functional MRI (fMRI) is known as brain reading. From a statistical standpoint, this challenge is a supervised learning task. The ability to predict cognitive states from new data gives a model selection criterion: prediction accu- racy. While a good prediction score implies that some of the voxels used by the classifier are relevant, one cannot state that these voxels form the brain regions involved in the cognitive task. The best predictive model may have selected by chance non-informative regions, and neglected rele- vant regions that provide duplicate information. In this contribution, we address the support identification problem. The proposed approach relies on randomization techniques which have been proved to be consistent for support recovery. To account for the spatial correlations between voxels, our approach makes use of a spatially constrained hierarchical clustering algorithm. Results are provided on simulations and a visual experiment

    Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis

    Get PDF
    The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented

    Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors

    Full text link
    Penalized regression is an attractive framework for variable selection problems. Often, variables possess a grouping structure, and the relevant selection problem is that of selecting groups, not individual variables. The group lasso has been proposed as a way of extending the ideas of the lasso to the problem of group selection. Nonconvex penalties such as SCAD and MCP have been proposed and shown to have several advantages over the lasso; these penalties may also be extended to the group selection problem, giving rise to group SCAD and group MCP methods. Here, we describe algorithms for fitting these models stably and efficiently. In addition, we present simulation results and real data examples comparing and contrasting the statistical properties of these methods

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks
    corecore